
Sébastien Mathier

www.excel-pratique.com/en

Conditions :

Conditions are very useful in programming because they allow us to execute actions based on specific criteria (it's the

same principle as the IF function).

The most important conditional function is If, and now we'll take a look at how it works :

If [CONDITION HERE] Then ' => IF condition is validated, THEN

 'Instructions if true

Else ' => OTHERWISE

 'Instructions if false

End If

Let's move right on to practice and return to the example that we used in the lesson on variables. The purpose of this

procedure was to display a dialog box containing the data from the row whose number is indicated in cell F5 :

Source file : conditions.xls

If you enter a letter in cell F5, it will cause a bug. We want to prevent that from happening.

Sub variables()

 'Declaring variables

 Dim last_name As String, first_name As String, age As Integer, row_number As Integer

 'Assigning values to variables

 row_number = Range("F5") + 1

 last_name = Cells(row_number, 1)

 first_name = Cells(row_number, 2)

 age = Cells(row_number, 3)

 'Dialog box

 MsgBox last_name & " " & first_name & ", " & age & " years old"

End Sub

Let's begin by adding a condition that will verify that the value of cell F5 is numerical before the code is executed.

We'll use the function IsNumeric to test this condition :

Sub variables()

 'If the value in parentheses (cell F5) is numerical (AND THEREFORE IF THE CONDITION IS

TRUE) then

 'execute the instructions that follow THEN

 If IsNumeric(Range("F5")) Then

 'Declaring variables

 Dim last_name As String, first_name As String, age As Integer, row_number As Integer

 'Values of variables

 row_number = Range("F5") + 1

 last_name = Cells(row_number, 1)

 first_name = Cells(row_number, 2)

 age = Cells(row_number, 3)

 'Dialog Box

 MsgBox last_name & " " & first_name & ", " & age & " years old"

 End If

End Sub

We also need to add instructions to execute in case the conditions are not met :

Sub variables()

 If IsNumeric(Range("F5")) Then 'IF CONDITION TRUE

 'Declaring variables

 Dim last_name As String, first_name As String, age As Integer, row_number As Integer

 'Values of variables

 row_number = Range("F5") + 1

 last_name = Cells(row_number, 1)

 first_name = Cells(row_number, 2)

 age = Cells(row_number, 3)

 'Dialog box

 MsgBox last_name & " " & first_name & ", " & age & " years old"

 Else 'IF CONDITION FALSE

 'Dialog box : warning

 MsgBox "Your entry" & Range("F5") & " is not valid !"

 'Deleting the contents of cell F5

 Range("F5").ClearContents

 End If

End Sub

Now non-numerical values won't cause any problems.

Working with our array, which contains 16 rows of data, our next step will be to test whether the variable row_number

soit : "greater than or equal to 2" and "less than or equal to 17".

But first, have a look at this list of comparison operators :

= is equal to

<> is different than

< is less than

<= is less than or eual to

> is greater than

>= is greater than or equal to

And these other useful operators :

AND
[condition1] AND [condition2]

The two conditions must be true

OR
[condition1] OR [condition2]

At least 1 of the 2 conditions must be true

NOT
NOT [condition1]

The condition should be false

Now let's add the conditions that we mentioned above, using AND along with the comparison operators listed above :

Sub variables()

 If IsNumeric(Range("F5")) Then 'IF NUMERICAL

 Dim last_name As String, first_name As String, age As Integer, row_number As Integer

 row_number = Range("F5") + 1

 If row_number >= 2 And row_number <= 17 Then 'IF CORRECT NUMBER

 last_name = Cells(row_number, 1)

 first_name = Cells(row_number, 2)

 age = Cells(row_number, 3)

 MsgBox last_name & " " & first_name & ", " & age & " years old"

 Else 'IF NUMBER IS INCORRECT

 MsgBox "Your entry " & Range("F5") & " is not a valid number !"

 Range("F5").ClearContents

 End If

 Else 'IF NOT NUMERICAL

 MsgBox "Your entry " & Range("F5") & " is not valid !"

 Range("F5").ClearContents

 End If

End Sub

If we wanted to make our macro a bit more practical, we could replace 17 with a variable that contained the number of

rows. This would let us add or remove lines from our array without having to change this limit each time.

In order to do this, we have to create a variable nb_rows and add this function:

In this case, we'll use WorksheetFunction.CountA which is the function COUNTA which you may already be familiar

with ...

We want this function to count the number of non-empty cells in the first column and then replace 17 with nb_rows :

Sub variables()

 If IsNumeric(Range("F5")) Then 'IF NUMERICAL

 Dim last_name As String, first_name As String, age As Integer, row_number As Integer

 Dim nb_rows As Integer

 row_number = Range("F5") + 1

 nb_rows = WorksheetFunction.CountA(Range("A:A")) 'NBVAL Function

 If row_number >= 2 And row_number <= nb_rows Then 'IF CORRECT NUMBER

 last_name = Cells(row_number, 1)

 first_name = Cells(row_number, 2)

 age = Cells(row_number, 3)

 MsgBox last_name & " " & first_name & ", " & age & " years old"

 Else 'IF NUMBER IS INCORRECT

 MsgBox "Your entry " & Range("F5") & " is not a valid number !"

 Range("F5").ClearContents

 End If

 Else 'IF NOT NUMERICAL

 MsgBox "Your entry " & Range("F5") & " is not valid !"

 Range("F5").ClearContents

 End If

End Sub

ElseIf :

ElseIf makes it possible to add more conditions after the IF command :

If [CONDITION 1] Then ' => IF condition 1 is true, THEN

 'Instructions 1

ElseIf [CONDITION 2] Then ' => IF condition 1 is false, but condition 2 is true, THEN

 'Instructions 2

Else ' => OTHERWISE

 'Instructions 3

End If

If condition 1 is true, Instructions 1 will be executed, and we will leave the If command (which begins with If and ends

with End If). If condition 1 is false, we continue to condition 2. If this condition is true, Instructions 2 will be executed,

and if it is false, then Instructions 3 (under Else) will be executed.

Here is an example, with a score between 1 and 6 in cell A1 (without decimals in this case) and a score_comment in

cell B1 based on the score:

Sub scores_comment()

 'Variables

 Dim note As Integer, score_comment As String

 note = Range("A1")

 'Comments based on the score

 If note = 6 Then

 score_comment = "Excellent score !"

 ElseIf note = 5 Then

 score_comment = "Good score"

 ElseIf note = 4 Then

 score_comment = "Satisfactory score"

 ElseIf note = 3 Then

 score_comment = "Unsatisfactory score"

 ElseIf note = 2 Then

 score_comment = "Bad score"

 ElseIf note = 1 Then

 score_comment = "Terrible score"

 Else

 score_comment = "Zero score"

 End If

 'Comments in B1

 Range("B1") = score_comment

End Sub

Select :

There is an alternative to using If with lots of ElseIf instructions : the Select command, which is better suited to these

sorts of situations.

Here is an example of the same macro written with Select :

Sub scores_comment()

 'Variables

 Dim note As Integer, score_comment As String

 note = Range("A1")

 'Comments based on the score

 Select Case note ' <= the value to test (the score, in this case)

 Case Is = 6 ' <= if the value = 6

 score_comment = "Excellent score !"

 Case Is = 5 ' <= if the value = 5

 score_comment = "Good score"

 Case Is = 4 ' <= if the value = 4

 score_comment = "Satisfactory score"

 Case Is = 3 ' <= if the value = 3

 score_comment = "Unsatisfactory score"

 Case Is = 2 ' <= if the value = 2

 score_comment = "Bad score"

 Case Is = 1 ' <= if the value = 1

 score_comment = "Terrible score"

 Case Else ' <= if the value isn't equal to any of the above values

 score_comment = "Zero score"

 End Select

 'Comment in B1

 Range("B1") = score_comment

End Sub

Please note that we could also have used other comparison operators, for example :

Case Is >= 6 'if the value is >= 6

Examples with different values :

Case Is = 6, 7 'if the values is = 6 or 7

Case Is <> 6, 7 'if the value is different than 6 or 7

Case 6 To 10 'if the value is = any number between 6 and 10

A conditional based on type :

IsNumeric (this is the function we used on the last page) returns TRUE if the value is numerical and FALSE if this is not

the case :

If IsNumeric(Range("A1")) = True Then 'IF THE VALUE IS NUMERICAL ...

The following code has the same effect as the version above (we don't have to include the = True because it is the

default to ask whether a condition is true) :

If IsNumeric(Range("A1")) Then 'IF THE VALUE IS NUMERICAL ...

If what we wanted to do was to test whether the value was NOT numerical, we could do this in either of the following

two ways :

If IsNumeric(Range("A1")) = False Then 'IF THE VALUE IS NOT NUMERICAL...

If Not IsNumeric(Range("A1")) Then 'IF THE VALUE IS NOT NUMERICAL ...

Here are some examples of other functions similar to IsNumeric :

If IsDate(Range("A1")) Then 'IF THE VALUE IS A DATE ...

If IsEmpty(Range("A1")) Then 'IF EMPTY...

If var_object Is Nothing Then 'IF OBJECT IS NOT SET ...

A conditional based on a variable's type :

To execute commands based on the type of a variable (Variant), we will need to use the VarType function.

The list of types will appear once we have entered the = operator :

If VarType(my_variable) = vbInteger Then 'IF my_variable if is of type Integer ...

Values of constants:

Constant Value

vbEmpty 0

vbNull 1

vbInteger 2

vbLong 3

vbSingle 4

vbDouble 5

vbCurrency 6

vbDate 7

vbString 8

vbObject 9

vbError 10

If VarType(my_variable) = vbInteger Then 'IF my_variable is of type Integer ...

'Identical to :

If VarType(my_variable) = 2 Then 'IF my_variable is of type Integer ...

A conditional based on comparing two character strings :

Up to this point, we have seen this :

my_variable = "Example 12345"

If my_variable = "Example 12345" Then ' => TRUE

In this case, the two strings are identical, it's nothing out of the ordinary ...

But if we want to test whether the variable contains the value "12345" without taking any of the other characters into

account, we would have to use the Like command and a * operator before and after the search value.

The * operator stands in for : any character or multiple characters :

my_variable = "Example 12345"

If my_variable Like "*12345*" Then ' => TRUE

The # operator can stand in for any numerical character from 0 to 9 :

my_variable = "Example 12345"

If my_variable Like "Example 12###" Then ' => TRUE

The ? operator can stand in for any single character :

my_variable = "Example 12345"

If my_variable Like "?xample?1234?" Then ' => TRUE

We can also use a particular character or range of characters in the same way :

[abc] stands in for any one of the following characters : a b c

[a-g] stands in for any one of the following characters : a b c d e f g

[369] stands in for any one of the following characters : 3 6 9

[2-5] stands in for any one of the following characters : 2 3 4 5

[?*#] stands in for any one of the following characters : ? * #

my_variable = "Example 12345"

If my_variable Like "[DEF]xample 1234[4-7]" Then ' => TRUE

An ! added after the [will stand in for any character not included within the bracketed expression :

my_variable = "Example 12345"

If my_variable Like "[!GHIJ]xample 1234[!6-9]" Then ' => TRUE

Comment : an uppercase character is not equivalent to the same character in lowercase in this context. If you don't want to

make distinctions between upper and lowercase characters, put an Option Compare Text command at the beginning of the

module.

© Excel-Pratique.com - PRIVATE USE ONLY

